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The general case of the problem of the thermo-elasticity of non-uniform plates is considered. A formal 

asymptotic expansion is constructed and the limiting problem (when the thickness of the plate approaches 

zero) is obtained. The limiting problem in the general case turns out to be different from the classical one, in 

particular, it contains five unknown functions, and the defining equations contain not only the temperature 

but also its derivatives (although the material of the plate is assumed to obey the Duhamel-Neumann law). 

These effects do not occur in uniform plates of constant thickness. This is obviously the reason why the 

effects stated below have not been mentioned previously, as far as we know. 

A GENERAL scheme of the asymptotic method for passage from a three-dimensional problem of the 
theory of elasticity in a thin region (thickness E-=S 1) to a problem in the theory of plates was 
previously proposed in [ 11. A case which leads to the classical equations of thermo-elastic plates was 
considered in [2] (it turns out that it corresponds to the case when the coefficients of thermal 
expansion of the material of the plate are of the order of E). 

1. FORMULATION OF THE PROBLEM 

Suppose a three-dimensional linearly elastic body occupying the region Q, of characteristic 
thickness E 4 1 is obtained by repetition of an element P, (the periodicity cells, PC) in the x1x2 plane 
(Fig. 1). The condition E Q 1 is formalized in the form ~40. 

The equations of equilibrium of this body have the form [3] 
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FIG. 1. 

b’CEV= {JEH’(Qe):v(.f) = 0 on I’,}, and I?, is the end surface (Fig. 1). Problem (1.1) 

corresponds to clamping of the body on the end surface and to the free side surface. 
We will take the defining equations of the material of the plate in the form (the Duhamel- 

Neumann law [3]) 

Uij=E-3(a~j~,(~/e)u,, -p*j(r/e)O) 

(14 

where aij are the local stresses, ti are the displacements, 8 is the temperature (in the problem 
considered it is assumed to be a specific steady-state value) and a+@~) and CL&/E) are the tensors 

of the coefficients of the elastic constants and thermal expansion. The functions aijkl(X/&), a,(~/&) 
ii;g;tr;pectively, are periodic with respect to X with a periodicity cell P, . Here we take Pij(~/&) 

Pi, We) = IVY We) + @if’ We) + . . - (1.3) 

(cI~(_&) = c$) (X/E) + ECX~) (52) + . . . , respectively). 
Equations (1.2) and (1.3) introduce the parameter E---the characteristic thickness of the plate-into the 

defining relations. The following treatments of the presence of E in them are possible. 

The physical asymptotic form. The elastic and thermo-elastic constants of the material are variable, i.e. we 
consider the spectrum of plates of different thickness and of different materials. For this case a characteristic 
value of p !?) = 0. This is due to the fact that from physical points of view, as the stiffness of the material 
increases, ?ts coefficient of thermal expansion should decrease. This case, for p;) #O, leads to the classical 



404 A. G. KOLPAKW 

problem of the~o-elasticity 121. Note that physical representations do not guarantee that 8’“) #O. Rather. 
from the physical point of view we might expect that pi!) = 0 for k = 0, 1, 2 and PrI #O beginning with 
k = 3. 

The geometrical asymptotic form. Suppose the material of the plate is physically the same for all values of its 
thickness. Then F in (1.2) and (1.3) is understood as a formal parameter introduced in order to take into 
account the connection between the stiffness of the plate and its thickness. For this case, @$@ # 0 and PA’) 
=Ofork%l. 

2. THE ASYMPTOTIC EXPANSION 

TO analyse the problem in question we will use the standard asymptotic expansion from [l] for the 
solution 

ci -2 ir(“’ (1) + silo) (X, iJ + . . * = 
c 

e”ii(k) (Jr, jj) (2.1) 

k==o 

(iP)=O, k=i, 2,. . . 

(.> - ---& j .d& 

’ pt 

is the average of the periodicity cell PI = e-rPE = {y = X’IE :fEP, > in the “fast” variables J? = 6’~ 
and S, is the projection of PI on the yty2 pIane; 

for the test function 

~=~(o)(X)+ei?(‘)(X,y)+ . . . = 
c 

&j(B) (X, y) (2.2) 
c=g 

for the stresses 
8 

uii = E-%&3 (X, 5) + E-%;;*) (X, Y) + . . . = 
c 

pCIy (W, 5) (2.3) 
T?I=-_1 

Here 2 = (x, x2) is the “slow” variable in the plane of the plate, see [l]. The functions on the 
right-hand sides of (Z.l)-(2.3) are tak?n to be periodic in y1 and ya with a periodicity cell Sr . 

For the functions of the arguments X, y, the differentiation operators d/&rj can be represented in 
the form (see [13]) c?/&%& + ~-‘%?y, ((x = 1, 2), ~-‘8/6’ys. 

Here and henceforth the Greek subscripts take the values 1 and 2, and the Latin subscripts take 
the values 1, 2 and 3 (unless explicitly stated otherwise). We also use the notation f,iY = 8f,ayi, 
f,_ = afiax,. 

Substituting expansions (2.1)-(2.3) into (1.1) and taking into account the rule for the replacement 
of differentiation operators, we obtain 

Here also we have changed to the variable i; = (x r , x2, y3) in the integrals. This replacement 

transfers the region of integration Q, of variable thickness into the region QIE = ((x1, x2, y3 = 
x&) : f E Q, }-thicknesses of the order of unity. This is more convenient for investigating the 
problem. The factor E in the integrals in (2.4) is related to this replacement. 

By substituting the expansions (2.2) and (2.3) into (1.2) we obtain, after equating expressions in 
the same powers of E, the following relation: 

u:;“’ = ai~~~~~~~ f a*~k~~~~~’ - ~~~~3~ (2.5) 
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The following relation will be useful later: 

s 
f(X,Y)dv’-+ 

5 
(f) (X)dX npa e-0 (2.6) 

Q*E 

where S is the projection of QIE (and Q,) onto the x1x2 plane. For the justification of this 
relationship see [ 11. 

3. THE EOUATIONS OF EQUILIBRIUM OF THE PLATE 

These equations are obtained independently of the defining equations. They were obtained in [l], 
so we will not derive them in detail here. We will merely note that the equations for the forces 
Ni(,m) = (mi’,“) ) and moments Mi(,“) = (a!:) y3) are obtained from (2.4) by considering test func- 
tions of the form 6 = 9(O)(?) (the equations for the forces) and V = &V(r) = &y3 IJJ (x) (the equations 
for the moments). The equations for the forces have the form 

Ne’= = O,,n=-3,.-22,-l (3.1) 

The equations for the moments have the form 

-Mg!,+Nfj”+“=O,. me-2 (3.2) 

These equations of equilibrium are identical with the classical ones and are the same irrespective 
of the defining relations of the materials of the plate [l]. The specific features of the problem 
considered here arise when analysing the defining relations derived below. 

4. DERIVATION OF THE DEFINING RELATIONS OF THE PLATE 

4.1. Stretching in the plane of the plate 
We will take a test function in Eq. (2.4) in the form G = &lS’G). Then v{tk, = 0 and in (2.4) the 

only terms that remain are those corresponding to k = 1. Consider the expressions in (2.4) for the 
same non-negative powers of E. For m = -3, integration of (2.4) by parts gives 

ofj8\v = 0 in Qr, o$;3)nj = 0 on y (4.1) 

Here Q, = E-‘Q& (not to be confused with QIE) is obtained by periodic repetition of the 
periodicity cell P, in the y1y2 plane, fi is the external normal to Qr , and y is the side (free) surface of 
Qr , obtained by periodic repetition of the side surface of the periodicity cell PI (in this connection 
henceforth y is used to denote both surfaces). 

Consider (2.5) once again. For m = -3 these relations give 
(-3) 

Uij = ajj~aZlf)a. + U~.~lU~'), 8 r 11 , I/-Bc’e (4.2) 

As a result, we arrive at problem (4.1), (4.2) with the following conditions, which arise from the 
definition of the function tick) in expansion (2.1): 

ii(‘) (X, ij) are periodic in yl, y, with PC S, and (11”‘>=0 (4.3) 

To solve this problem (which is linear in the variables j with U’o’(%), 0(x) playing the role of 
parameters) we introduced [l, 21 the so-called cell problems (CP), which have the following form: 
the cell problems of the theory of elasticity for plates 

(aijkl~I;F~~ - aij,,aYs'), j u = 0 in P, (4.4) 
(Uij~llv~“~~ - Uij~~,v) !lj = 0 on y 

Np”“(Y) are periodic in yl and y2 on Sr and (Npa”) = 0, u = 0, 1 and the cell problems of 
thermo-elasticity for plates 
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(aijklF~‘,u - f@‘), jy = 0 in P, (4.5) 

~~j~~~F~~‘~~~ - ply’) ai = 0 on y 

FCyl(g) are period in y1 and y2 on S3 and (8”)) = 0, v = 0, 1. 
Solutions of problems (4.4) and (4.5) exist and are unique for standard conditions on the elastic 

and tb~~o-elastic cunstants (for example f3]). 
It was shown in [1] that 

PB” (J) =--y& (4.6) 

where {t?*} are basis vectors. 
By cornicing (4.4) and (4.5) with (4-l)-(4.31, taking into account the linearity of the last 

problem, we obtain (taking (4.6) into anoints 

$1, = ?y”o (0) u,, @&% ‘- yg&&$ + P(“)e -+ izj (1) (4.7) 

The occurrence of the unction w(x) is due to the fact that problem (4.1)-(4.3) contains only 
derivatives with respect to the variable j. 

To determine the functions u,@) (or = I, 2) we will use Eqs (3.1) for wt = -3. Substituting (4.7) 
into (4.2) we obtain 

o&@ = @i&_G#‘~~ + ~~~~~*~~~ @x - ~i~~~~~~~ + ~~~~~~~~~~~6 - @@ = 
= ~i~~~u~~*~ -t- aijklfi?t, t&z, BX + ai*l$l~?i~e - ##e 

ku w 

Ave~~~n~ the fatter equation over the Feri~dicity cell P1 we obtain for ij = y8 

N&@ =1: (c@)) = (a*6 + ~~~I@$J uz!pbc - (#!! - ay~t&%‘?~y) 8 (4.8) 

4.2. Bending 
Substituting (4.8) into (3.1) for m = -3 and ij = y6 we obtain tbe equation 

(0+a@ + ~~~~~~,~~> @BX - (P$ - %8&L> 6). ox = 0 (4.9) 

The bounda~ conditions for u,(O), OL = 1,2 follow from the original boundary conditions and the 
expansion (2.1) (see [l] for more details) and have the form 

&‘“‘(X) ==o, a=& 2 on as (4. IO) 

We will denote the solution of problem (4,9), (4.101, which, unlike the elastic case [I], is not 
necessarily the zeroth solution, by 

~~@}~~~~~~, a-I, 2 (4.11) 

where R is the resolving operator of problem (4.9), (4.10). {In fact the operator in (4.11) depends 
only on VB since the coef~cieuts in (4.9) are constants; see [4].) 

The fact that the quantity R0 does not, in general, vanish, gives rise, in the final case, to all the 
specific features of the problem considered. 

Taking (4.11) into account we can rewrite (4.7) in the form 

ii(‘) = .Z%@* Q?ag, B+ - y*z& Xi + F(O)6 + iif (X, 6 (4.12) 

We will continue our consideration of Eq. (2.4) with test function P = &tS~‘)(~) (k = l), only now 
we will consider terms corresponding to m f= -2. For these we have 

a&:$# --- 0 in & @‘RI = 0 on y (4.13) 

Relations (2.5) with m = -2 give 

i@ = ~~~~~~~~~ f &&+Lx - I , iw@ (4.14) 

Substituting (4.12) into (4.14) we obtain the equation 



Thermo-elasticity of non-uniform plates 407 

(-2) 
Oij _- utjkluL:)l!j f aijkJP (fle)a+ fLTVX - 

- aijq3Yg$m~p.x + aijka F’O’& k ax ‘+ aijkawk, ax - pjf’e (4.15) 

In addition, according to the definition of the functions u +) from expansion (2.1), we conclude 

that 

iP* (x. $) is periodic in y,, yz on S, and <iI’*‘)= (4.16) 

The solution of problem (4.13), (4.15) and (4.16) is again obtained by introducing cell problems. 

In this case this is the second cell problem of thermo-elasticity 

(ai,,,@Yv f &jky@“), ju = 0 in PI (4.17) 

(aij~~T$~ + WkJP)nj =O on Y 

- 

TaBy (7) is periodic in yl and y2 on S1 and (T - apy) = 0 and the third problem of thermo-elasticity 

(UijklCe\, + UijkaFk')),jv 1= 0 in PI (4.18) 

(&jk&‘I, + &jka&? nj = 0 on Y 

G(“)()i) is periodic in yl and y2 on S1 and (6(“‘) = 0. 
After this the solution of (4.13), (4.15) and (4.16) is obtained in the form 

(5(2) = NaPIU~o)axpx + TM’ (R0)a, fjxyr $- -vamWa. PX + 

+c e,,-p’e-Yp,,&3 ’ (a) (4.19) 

Substituting (4.19) into (4.15) we obtain 

apl 01i2’ = (aijktNk, 1~ - !/#ilaf!) #ax~x + (aijkl@!?p + &ia@) wa, /kc + 

I- f”ijkl G?Yv + aijk$P) (Wa, ~XYX -I- (%jk&?‘y + aijkaG’)e, ouc + 

-t (aijklFg’b - fiif’> 8 (4.20) 

The first two terms of relation (4.20) are identical with those obtained in [l] for a purely elastic 
plate, and the term l3t)Q corresponds to [2]. 

Integrating over the periodicity cell PI Eq. (4.20) and the same equation multiplied by y3, we 
obtain defining equations connecting the forces and moments N$-‘) and M CL*) 11 with deformation 
and thermal characteristics. 

The defining relations. The elastic and thermo-elastic constants of the plate are the coefficients in 
the equations connecting the forces and moments with the deformation and temperature character- 
istics. We will write these. 

The elastic constants 

A;;$, zz ((aijaf3 + uijkliv?FV) !/a’) (4.21) 

Y, u=o, 1 

for u = F = O-the st ff i nesses to stretching (in the plane of the plate), for u-t- l.~ = l-the 
skew-symmetric part of the stiffnesses, and v = l.~ = l-the stiffnesses to bending. 

The thermo-elastic constants 

Bj;‘p = - {(fij;” - eQk#$,) y$) (4.22) 

Fca = <(aiikJeSp + ai/haFk’)) y,‘) 

T&IV = <(aij#Tf!?p + Q&P) Y 3”) 

with lo, = O-the thermo-elastics for deformation in the plane of the plate, and lo = l-for bending. 
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The defining equations. Using the quantities (4.21) and (4.22) introduced above, we can write [in 
doing so we take into account expression (4.1 l)] 

Ng’ = ,&sr&q)px - I#*‘*@ (4.23) 

N$*’ = A~sw,, 6% + A$&‘~~~x + ‘l’$&bx~&O)rrXKX + i&8. ax - B$% 

M$*’ ‘(0, = A&gw,, 6s + &zt&‘~s.s- + T&x ua, ~xxr -t- &a~, cLs - B$“fi 

The boundary conditions. These are obtained in the same way as in [I] by substituting expansion 
(2.1) into the initial boundary conditions and have the form 

Problem (4.23)-(4.25) is the asymptotic version of the problem of the thermo-elasticity of thin 
plates. It is to a large extent analogous to the classical model but it is not completely identical. 

The number of unknowns in the therms-e~astici~ problem. In the case of the purely elastic 
problem, the quantities ok, and w, (o = 1, 2) satisfy the same equations, see [l], as a result of 
which they may be iden~~ed. The solution of the bending problem, Corres~ndingIy, can be found 
in terms of the vector (wr , w2, u3(*)), which can be treated as the classical three-dimensional 
displacement vector [although in the initial meaning its components are the elements of the 
expansion (2.1) of the displacement vector in problem (l.l)]. In the case of the thermo-elasticity 
problem, even when there is no bending (when u3 co) = 0) and non-classical effects (see below) ,u(0) 
and w, (o = 1,2) cannot be identified, since they satisfy different defining equations [with thermal 
expansion constants B$)’ # B $)O for N$i3) and N$‘) , see (4.23)]. Hence, the five-dimensional 
vector (ui(O), uzCo), w1 , w2, u3 (+ ) acts as the solution of the thermo-elasticity problem for plates. In 
this case the problem in terms of (ui(*), u2(*))--the displacements in the plane of the plate, is not 
related to the problem in terms of (wit w, , u3(‘)), which are displacements of a bending nature and 
can be solved independently of the latter (but not, in general, vice versa). 

5. THE GEOMETRICAL AND PHYSICAL ASYMPTOTIC FORMS 

1. In the case of the physical asymptotic form, when p ii (‘1 = 0, but virtue of (4.5) and (4.18) we 
have that F(O) = G@) = 0, and by virtue of R0 = 0 [see (4.11)] the term with FaPr does not occur in 
the defining equations. In this case u1 co) = r+(O) = 0 and need not be considered, while the defining 
equations for the problem with respect to (wi , w2, u3(“) are obtained if in (4.23) we formally put 
B$)” = I’$)” = I?;& = 0 In this case B_$)’ = 0 indicates that the plate on heating does not expand . 
in its plane. This completely a 

7 
rees with the fact that the coefficient of thermal expansion of the 

material of the plate pij = E p ,$j + . . . -+ 0 when E + 0 [see (1.3)]. 
2. The geometrical asymptotic form corresponds to the case @$@ #O, which, generally speaking, 

leads to the presence of all the coefficients in (4.23). This asymptotic form corresponds, in 
particular, to “normal” thermal expansion of the plate in its plane (according to (1.3), pii = p,i”) in 
this case). 

A uniform plate of constant thickness, the geometrical asymptotic form. Suppose the plate is made 
of a uniform isotropic material and has constant thickness: 

Uj*,=CfMlSt, fiijaCOnSt, PI= [ -1, 1) ‘Xl -‘I,. ‘/?) 
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In this case the solutions of problems (4.4) and (4.5) are as follows: 

Substituting these 
problems, we obtain 

v nbo = ,Vm = 0 
’ 1 2 

Ia80 = _ ‘=fi 
9 3 - Y3 

%333 

p = F(O) = () P 
2 9 

p - 
3 

33 

a3333 
Y3 

expressions into (4.17) and (4.18), respectively, and solving the resulting 

Gta' = 0 for x# a Gta' x , a 

Substituting these expressions into (4.22) we obtain 

Here we have used the well-known symmetry of the elastic-constant tensor [3]. By making the 
coefficients T sap? zero we “decouple” the problems with respect to (ui(‘), uzCo’) and (wi , w2, LQ(‘)). 

Plates of non-constant thickness made of uniform material. Suppose, as above, that aijk[ = const, 
l3ij = const, but PI is an arbitrary region (capable of acting as a periodicity cell). In this case, 
generally speaking, Fsa , T PiiaPv # 0. 
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